

Technical Specifications For <u>ADSS (All Dielectric Self Supporting)</u> <u>Optical Fiber Cable</u> (ADSS-24 Cores,single sheath,ITU-T G.652.D Fibers)

Spec. No.: TCFO 2016-17

Prepared by:

Mr. Li Qiang

Technical Department Engineer

Approved by:

Mr.Zhao Zilong

Deputy Factory Manager

& Technical Manager

Technical Specification for Optical Fiber Cable

1. General

This specification covers the construction all dialectic self-supporting Optical Fiber Cable (ADSS) properties for outdoor application.

The optical fiber cable contains 24 cores (6cores/tube) single mode ITU-T G.652.D fiber.

The optical fiber cable shall be according to standard ISO9001,IEEE, IEC, EN, TIA/EIA, IEC60793, IEC 60794 and MOI /TISI 2166-2548 standards.

Characteristics		specified values	Units	
Optical Characteristics				
Mode field diameter (at 1310nm)		9.2±0.5	μm	
Cut-off waveler	ngth (λ_{cc})	≤1260	nm	
A	at 1310nm	≤0.36	dB/km	
	at 1550nm	≤0.22	dB/km	
coefficient	at 1625nm	≤0.25	dB/km	
Macro bending loss (Φ60mm, 100 circles, at 1550nm)		≤0.1	dB	
Attenuation non-uniformity		≤0.05	dB	
Dispersion coef	fficient (1288~1339nm)	≤3.5		
(1271~1360nm)		≤5.3	ps/(nm km)	
(1550nm)		≤18		
Polarization mode dispersion coefficient		≤0.2	ps/\sqrt{km}	
Zero dispersion wavelength λ_0		1300 ~1324	nm	
Max zero dispersion slope S _{0max}		≤0.092	ps/(nm ² km)	
Geometric characteristic				
Cladding diameter		125.0±1.0	μm	
Core / cladding concentricity error		≤1.0	μm	
Cladding non-circularity		≤1.0	%	
Coating diameter		245±10 or 242±7	μm	
Cladding / coating concentricity error		≤12.0	μm	
Mechanical characteristic				
Proof stress		≥0.69	GPa	
Others		Full comply with ITU	-TG.652.D	
Attenuation nor Dispersion coef Polarization mo Zero dispersion Max zero dispe Geometric cha Cladding diamet Cladding non-c Coating diamet Cladding / coat Mechanical ch Proof stress Others	$\frac{1271 \times 1350 \text{ mm}}{(1271 \times 1360 \text{ nm})}$ $(1271 \times 1360 \text{ nm})$ $(1271 \times 1360 \text{ nm})$ (1550 nm) (1500 nm)	$\leq 0.05 \\ \leq 3.5 \\ \leq 5.3 \\ \leq 18 \\ \leq 0.2 \\ 1300 \sim 1324 \\ \leq 0.092 \\ 125.0 \pm 1.0 \\ \leq 1.0 \\ \leq 1.0 \\ \leq 45 \pm 10 \text{ or } 242 \pm 7 \\ \leq 12.0 \\ \geq 0.69 \\ \text{Full comply with ITU}$	dB dB ps/(nm km) ps/\sqrt{km} nm $ps/(nm^2 km)$ μm μm μm μm μm μm μm μm π GPa -TG.652.D	

2. Optical Fiber Data ITU-T G.652.D

3. Cable Specifications and Structure

3.1 ADSS-24F Specifications

Item		Description	
Cable cores		24F	
Control Strongth mombor	Material	Non-metallic FRP	
Central Strength member	Diameter(mm.)	Nom. 1.7	
Optical fiber	Number Per Tube	6	
Tube filling (Filling compound)	Material	Thyrotrophic jelly	
	Material	PBT(polybutylene terephalate)	
Puffer tube/Loose tube	Outer diameter	Nom 20	
Buller tube/Loose tube	(mm.)	Nom: 2.0	
	Number	4	
Filler rod	Number	1	
Water blocking element	Material	Water blocking tape, Water swellable yarn	
Additional strength member	Material	Aramid yarns	
	Material	UV-proof Black HDPE with Standard	
Outor Shooth		ASTMD, DIN, IEC, JIS, or BS	
Outer Sheath	Thickness(mm)	≥1.6	
Ripcord	Material	Plastic thread or Polyester cords	
Cable Diameter (±0.5mm)		Nom. 7.6	
Cable Weight (kg/km)		Approx. 60	
Maximum Tensile (installation)		100N	
Maximum Tensile/Crush (short time)		4000/100mm	
Temperature range		-10 °C to + 70 °C for Operation	
		0 °C to + 60 °C for Installation	
Min handing rad	ine	15 x outer diameter for Operation	
Min. bending fadius		20 x outer diameter for Installation	

3.2 Cross section of ADSS

Cross-sect of ADSS-24F

No.	Fiber Identification	Loose Tube Identification
1	Blue	Blue
2	Orange	Orange
3	Green	Green
4	Brown	Brown
5	Slate	-
6	White	-

4. Color code for fiber and loose tube identification(EIA/TIA 598A)

5. Cable outer surface markings

Shall be permanently marked with the following information at every interval of 1 meter throughout the length of cable:

Customer name

Type and number of cores

Manufacture's name

Date of manufacture

Length marking

6. Cable packing

The cable to be installed shall be supplied on drums with a length of 4,000 or another meters/ drum (with tolerance of 1%).

The other end shall be fitted with a suitable cap to prevent ingress of moisture.

Item	Details	
	Tensile force :4000N	
	Holding time : 1 hour	
Tensile loading	Length: 50-100m	
	Variation of attenuation : Less than 0.1 dB (at 1550 nm)	
	In accordance with IEC 60794 - 1 - 2 - E1	
	Impact energy : According to Table 1 of EIA/TIA-455-25C Drop	
	hammer mass and resulting test impact energy or	
	see technical requirement	
Impact registence	Number of impacts : 2 impact cycles	
Impact resistance	Number of impact points : 3 points different	
	Impact rate : $\leq 2 \text{ sec } / \text{ cycle}$	
	Test result : Change of attenuation < 0.1 dB (at 1550 nm)	
	In accordance with IEC 60794-1-E4	
	Dimension of steel plate : 100 mm	
Compression test	Compression force : 2,200N	
Compression test	Variation of attenuation : Less than 0.1 dB (at 1550 nm)	
	In accordance with IEC 60794 - 1 - 2 - E3	
	Mass of the weight : 5 kg	
	Bending diameter : 20 x diameter of cable	
Repeated Bending test	Number of cycles : 20	
	No fiber shall be break during the test	
	In accordance with IEC 60794 - 1 - 2 - E6	
	Sample length : 1 m	
Twisted/Tersion test	Number of turn : ±180 degrees	
1 wisted/ 1 orsion test	Mass of the weight : 5.0 kg	
	Number of cycles : 10	

7. Mechanical and Environmental Requirements.

Spec. NO.: TCFO 2016-17

บริษัท ไทยไขน่า ไฟเบอร์ ออพติดส์ จำกัด Thai China Fiber Optics Co., Ltd. 泰 中 光 缆 有 限 公 司。

	Variation of attenuation : Less than 0.1 dB (at 1550 nm)	
	In accordance with IEC 60794 - 1 - 2 - E7	
	Variation of temperature : -10 °C to $+70$ °C	
	Number of cycles : 2	
Temperature cycling test	Holding time per each step : 12 hours	
	Variation of attenuation : Less than 0.1 dB/km (at 1550 nm)	
	In accordance with IEC 60794 - 1 - 2 - F1	
	Holding time : 1 hour	
	Water height : 1 m	
Water penetration test	Sample length: 3 m.	
	No water leak from end of cable.	
	In accordance with IEC 60794 - 1 - F5	

...End of specifications...

ใบอนุญาตที่ ท 5264-48/2166

ใบอนุญาต

ทำผลิตภัณฑ์อุตสาหกรรมที่มีพระราชกฤษฎีกากำหนดให้ต้องเป็นไปตามมาตรฐาน อาศัยอำนาจตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ.๒๕๑๑ เลขาธิการสำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม ออกใบอนุญาตฉบับนี้ให้

บริษัท ไทย ไซน่า ไฟเบอร์ ออพติคส์ จำกัด

เลขประจำตัวผู้เสียภาษีอากร 0205546010701

ทำผลิตภัณฑ์อุตสาหกรรม เคเบิลเส้นใยนำแสง เล่ม 3-20 เคเบิลภายนอกอาคาร -ข้อกำหนดคุณลักษณะเป็นรายกลุ่ม

สำหรับเคเบิลเส้นใยนำแสงโทรคมนาคม แขวนในอากาศรับน้ำหนักตัวเองได้

ที่ถูกต้องตามมาตรฐานผลิตภัณฑ์อุตสาหกรรม เคเบิลเส้นใยนำแสง เล่ม 3-20 เคเบิลภายนอกอาคาร -ข้อกำหนด คุณลักษณะเป็นรายกลุ่มสำหรับเคเบิลเส้นใยนำแสงโทรคมนาคม แขวนในอากาศรับน้ำหนักตัวเองได้

> หนองขาม ทะเบียนโรงงานเลขที่

มาตรฐานเลขที่ มอก. 2166-2548

เครื่องหมายการค้า

บริษัท ไทย ไชน่า ไฟเบอร์ ออพติคส์ จำกัด ทำที่โรงงานชื่อ

ตั้งอยู่ที่อาคารเลขที่ 83/43 ตรอก/ซอย

หมู่ที่ 10 ตำบล/แขวง จังหวัด ชลบรี

มีรายการ ดังต่อไปนี้

ถนน

(๑) รายละเอียดแนบท้ายใบอนุญาต

(๒) บันทึกการเปลี่ยนแปลงต่างๆ

แสดงไว้ในลำดับที่ ๒ แสดงไว้ในลำดับที่ ๑

อำเภอ/เขต ศรีราชา

จ3-74(2)-7/48 ชบ

ทั้งนี้ ต้องปฏิบัติตามเงื่อนไขการอนุญาตที่เลขาธิการกำหนด

ออกให้ ณ วันที่ 2 7 มิ.ย. 2562

(นายวันชัย พนมชัย) เลขาธิการสำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม กระทรวงอุตสาหกรรม

ลำดับที่ ๒ หน้าที่ ๑

รายละเอียดแนบท้ายใบอนุญาตทำผลิตภัณฑ์อุตสาหกรรมที่มีพระราชกฤษฎีกา กำหนดให้ด้องเป็นไปตามมาตรฐาน

ผู้รับใบอนุญาต____บริษัท ไทย ไซน่า ไฟเบอร์ ออพติคส์ จำกัด

ใบอนุญาตที่<u>ท 5264-48/2166</u>

รายการที่	รายละเอียดของผลิตภัณฑ์อุตสาหกรรมที่ได้รับอนุญาต (โดยระบุประเภท/ แบบ/ ขนาด/ ชั้น/ และอื่นๆ)	
1	เคเบิลเส้นใยนำแสงโทรคมนาคม เคเบิลแบบกลม ตีเกลียวชั้นเดียว เปลือกใน ไม่มี ไม่มีเกราะป้องกัน เปลือกนอก PE จำนวนแกน 120(12แกน/ท่อ), 132(12แกน/ท่อ), 144(12แกน/ท่อ)	
2	เคเบิลเส้นใยนำแสงโทรคมนาคม เคเบิลแบบกลม ตีเกลียว 2 ชั้น เปลือกใน ไม่มี ไม่มีเกราะป้องกัน เปลือกนอก PE จำนวน แกน 156(12แกน/ท่อ), 168(12แกน/ท่อ), 180(12แกน/ท่อ), 192(12แกน/ท่อ), 204(12แกน/ท่อ), 216(12แกน/ท่อ), 228(12แกน/ท่อ), 240(12แกน/ท่อ), 252(12แกน/ท่อ), 264(12แกน/ท่อ), 276(12แกน/ท่อ), 288(12แกน/ท่อ), 300(12แกน/ ท่อ), 312(12แกน/ท่อ)	
	LORA	
	(นางกมลวรรณ ฉ่ำเลิศวัฒน์)	
	ผู้อำนวยการกองควบคุมมาตรฐาน	
	พนักงานเจ้าหน้าที่ วันที่ <u>27 มิ.ย. 2562</u>	